MatematikB.ParablensToppunkt History

Hide minor edits - Show changes to markup - Cancel

May 18, 2010, at 03:13 AM by 87.58.31.118 -
Changed lines 11-13 from:
to:
Changed lines 17-56 from:
Andengradspolynomiet har forskriften:
{$$f(x)=ax^2+bx+c$$}
Ved differentiation fås:
{$$f'(x)=2ax+b$$}
Vi sætter f'(x)=0 og løser ligningen:
{$$ 2ax+b=0 $$}
{$$ 2ax=-b $$}
{$$ x=\frac{-b}{2a} $$}
y-koordinaten findes ved at indsætte det fundne udtryk for x-koordinaten i forskriften:
{$$ y=a \left( \frac{-b}{2a} \right)^2 + b \left( \frac{-b}{2a} \right) +c $$}
{$$ y=a \left( \frac{b^2}{4a^2} \right) - \frac{b^2}{2a} +c$$}
{$$ y=\left( \frac{b^2}{4a} \right) - \frac{b^2}{2a} +c$$}
{$$ y=\left( \frac{b^2}{4a} \right) - \frac{2b^2}{4a} +\frac{4ac}{4a}$$}
{$$ y=\frac{b^2-2b^2+4ac}{4a}$$}
{$$ y=\frac{-b^2+4ac}{4a}$$}
{$$ y=\frac{-d}{4a}$$}
Altså har toppunktet koordinaterne:
{$$T= \left( \frac{-b}{2a}, \frac{-d}{4a} \right) $$}
Som var det, vi skulle vise. QED
to:

Andengradspolynomiet har forskriften:

{$$f(x)=ax^2+bx+c$$}

Ved differentiation fås:

{$$f'(x)=2ax+b$$}

Vi sætter f'(x)=0 og løser ligningen:

{$$ 2ax+b=0 $$}

{$$ 2ax=-b $$}

{$$ x=\frac{-b}{2a} $$}

y-koordinaten findes ved at indsætte det fundne udtryk for x-koordinaten i forskriften:

{$$ y=a \left( \frac{-b}{2a} \right)^2 + b \left( \frac{-b}{2a} \right) +c $$}

{$$ y=a \left( \frac{b^2}{4a^2} \right) - \frac{b^2}{2a} +c$$}

{$$ y=\left( \frac{b^2}{4a} \right) - \frac{b^2}{2a} +c$$}

{$$ y=\left( \frac{b^2}{4a} \right) - \frac{2b^2}{4a} +\frac{4ac}{4a}$$}

{$$ y=\frac{b^2-2b^2+4ac}{4a}$$}

{$$ y=\frac{-b^2+4ac}{4a}$$}

{$$ y=\frac{-d}{4a}$$}

Altså har toppunktet koordinaterne:

{$$T= \left( \frac{-b}{2a}, \frac{-d}{4a} \right) $$}

Som var det, vi skulle vise. QED

May 18, 2010, at 02:26 AM by 87.58.31.118 -
Changed lines 17-56 from:

Andengradspolynomiet har forskriften:

{$$f(x)=ax^2+bx+c$$}

Ved differentiation fås:

{$$f'(x)=2ax+b$$}

Vi sætter f'(x)=0 og løser ligningen:

{$$ 2ax+b=0 $$}

{$$ 2ax=-b $$}

{$$ x=\frac{-b}{2a} $$}

y-koordinaten findes ved at indsætte det fundne udtryk for x-koordinaten i forskriften:

{$$ y=a \left( \frac{-b}{2a} \right)^2 + b \left( \frac{-b}{2a} \right) +c $$}

{$$ y=a \left( \frac{b^2}{4a^2} \right) - \frac{b^2}{2a} +c$$}

{$$ y=\left( \frac{b^2}{4a} \right) - \frac{b^2}{2a} +c$$}

{$$ y=\left( \frac{b^2}{4a} \right) - \frac{2b^2}{4a} +\frac{4ac}{4a}$$}

{$$ y=\frac{b^2-2b^2+4ac}{4a}$$}

{$$ y=\frac{-b^2+4ac}{4a}$$}

{$$ y=\frac{-d}{4a}$$}

Altså har toppunktet koordinaterne:

{$$T= \left( \frac{-b}{2a}, \frac{-d}{4a} \right) $$}

Som var det, vi skulle vise. QED

to:
Andengradspolynomiet har forskriften:
{$$f(x)=ax^2+bx+c$$}
Ved differentiation fås:
{$$f'(x)=2ax+b$$}
Vi sætter f'(x)=0 og løser ligningen:
{$$ 2ax+b=0 $$}
{$$ 2ax=-b $$}
{$$ x=\frac{-b}{2a} $$}
y-koordinaten findes ved at indsætte det fundne udtryk for x-koordinaten i forskriften:
{$$ y=a \left( \frac{-b}{2a} \right)^2 + b \left( \frac{-b}{2a} \right) +c $$}
{$$ y=a \left( \frac{b^2}{4a^2} \right) - \frac{b^2}{2a} +c$$}
{$$ y=\left( \frac{b^2}{4a} \right) - \frac{b^2}{2a} +c$$}
{$$ y=\left( \frac{b^2}{4a} \right) - \frac{2b^2}{4a} +\frac{4ac}{4a}$$}
{$$ y=\frac{b^2-2b^2+4ac}{4a}$$}
{$$ y=\frac{-b^2+4ac}{4a}$$}
{$$ y=\frac{-d}{4a}$$}
Altså har toppunktet koordinaterne:
{$$T= \left( \frac{-b}{2a}, \frac{-d}{4a} \right) $$}
Som var det, vi skulle vise. QED
May 18, 2010, at 01:40 AM by 87.58.31.118 -
Deleted lines 13-15:

(:table border=1 width=90% cellpadding=10 align=right bgcolor=#cccc99 cellspacing=0 :) (:cellnr:)

Changed lines 49-52 from:

(:tableend:)




to:
Deleted line 58:

Test

May 18, 2010, at 01:39 AM by 87.58.31.118 -
Added lines 14-16:

(:table border=1 width=90% cellpadding=10 align=right bgcolor=#cccc99 cellspacing=0 :) (:cellnr:)

Added lines 52-55:

(:tableend:)




Changed lines 62-65 from:
to:

Test

May 17, 2010, at 04:04 AM by 87.58.31.118 -
Changed lines 14-15 from:

Bevis

to:

Bevis

May 17, 2010, at 04:03 AM by 87.58.31.118 -
Changed line 10 from:

(:toggle div=parablenstoppunkt init=hide lshow=Bevis lhide="Bevis":)

to:

(:toggle div=parablenstoppunkt init=hide lshow=Bevis lhide="Skjul bevis":)

Changed lines 14-15 from:
to:

Bevis

May 17, 2010, at 04:01 AM by 87.58.31.118 -
Changed line 10 from:

(:toggle div=parablenstoppunkt init=hide lshow='''Bevis''' lhide="Skjul bevis":)

to:

(:toggle div=parablenstoppunkt init=hide lshow=Bevis lhide="Bevis":)

Changed lines 14-15 from:

Bevis

to:
May 17, 2010, at 04:01 AM by 87.58.31.118 -
Changed line 10 from:

(:toggle div=parablenstoppunkt init=hide lshow=Bevis lhide="Skjul bevis":)

to:

(:toggle div=parablenstoppunkt init=hide lshow='''Bevis''' lhide="Skjul bevis":)

May 14, 2010, at 10:02 PM by 87.58.31.118 -
Changed lines 10-13 from:

(:toggle div=box1 init=hide lshow=Bevis lhide="Skjul bevis":)

to:

(:toggle div=parablenstoppunkt init=hide lshow=Bevis lhide="Skjul bevis":)

May 14, 2010, at 08:24 PM by 87.58.31.118 -
Added lines 9-13:

(:toggle div=box1 init=hide lshow=Bevis lhide="Skjul bevis":)

Changed lines 52-54 from:

Som var det, vi skulle vise. QED

to:

Som var det, vi skulle vise. QED

March 09, 2010, at 01:21 AM by 87.58.29.131 -
Changed line 47 from:

QED

to:

Som var det, vi skulle vise. QED

March 09, 2010, at 01:20 AM by 87.58.29.131 -
Changed lines 27-28 from:

Y-koordinaten findes ved at indsætte det fundne udtryk for x-koordinaten i forskriften:

to:

y-koordinaten findes ved at indsætte det fundne udtryk for x-koordinaten i forskriften:

Changed lines 41-47 from:

{$$ y=\frac{-d}{4a}$$}

to:

{$$ y=\frac{-d}{4a}$$}

Altså har toppunktet koordinaterne:

{$$T= \left( \frac{-b}{2a}, \frac{-d}{4a} \right) $$}

QED

March 09, 2010, at 01:15 AM by 87.58.29.131 -
Added lines 1-41:

Parablens toppunkt

Parablens toppunkt er punktet, hvor parablen har maksimum, hvis a<0 (parablen vender benene nedad), eller minimum, hvis a>0 (parablen vender benene opad). Toppunktet kan findes vha. følgende formel:

{$$T= \left( \frac{-b}{2a}, \frac{-d}{4a} \right) $$}

hvor d er diskriminanten {$d=b^2-4ac$}

Bevis

Andengradspolynomiet har forskriften:

{$$f(x)=ax^2+bx+c$$}

Ved differentiation fås:

{$$f'(x)=2ax+b$$}

Vi sætter f'(x)=0 og løser ligningen:

{$$ 2ax+b=0 $$}

{$$ 2ax=-b $$}

{$$ x=\frac{-b}{2a} $$}

Y-koordinaten findes ved at indsætte det fundne udtryk for x-koordinaten i forskriften:

{$$ y=a \left( \frac{-b}{2a} \right)^2 + b \left( \frac{-b}{2a} \right) +c $$}

{$$ y=a \left( \frac{b^2}{4a^2} \right) - \frac{b^2}{2a} +c$$}

{$$ y=\left( \frac{b^2}{4a} \right) - \frac{b^2}{2a} +c$$}

{$$ y=\left( \frac{b^2}{4a} \right) - \frac{2b^2}{4a} +\frac{4ac}{4a}$$}

{$$ y=\frac{b^2-2b^2+4ac}{4a}$$}

{$$ y=\frac{-b^2+4ac}{4a}$$}

{$$ y=\frac{-d}{4a}$$}